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Introduction 
21st Century electric networks are rapidly evolving on multiple dimensions, including the development of 
energy information and operational platforms, in response to the adoption of a wide array of sensors, the 
penetration of significant distributed energy resources (including renewable resources and load 
management), and the enabling of market participation by millions of customers.  This transition from 
vertically oriented value chain to a hybrid, more horizontal industry structure creates the need for the 
convergence of data, controls, and transactions into a unified energy platform enabling reliable and secure 
market and grid operations. The resulting platform is an emerging Enernet.1   

In this new context, data includes a wide range of types to enable both use by electric systems for 
planning, operations, asset management, and electricity markets applications, and new services for end 
customers and other market participants. When combined with an exponential growth in volume and 
diversity of data sources and in variety of uses and related latency requirements, developing an effective 
data management strategy presents a very large challenge. 

Although this growth has direct implications on computing applications, analytics and computing 
infrastructure investment, it’s important to consider all of the data management steps: collect, store, 
organize, analyze and share. It’s also important to note the role communications infrastructure plays in 
this process, as it’s often a limiting factor in many smart grid systems and existing utility operational and 
enterprise networks.  

Cisco has estimated the value of grid modernization investments in the US at about $210 billion through 
its Gridonomics™ analysis.2 To realize this 
value, a 21st Century unified energy platform 
must be based on solid architecture and 
informed technology selections to fully 
harness the convergence of data, controls and 
transactions. Moreover, if this convergence is 
accomplished, the value number for grid 
modernization may be even higher. This is 
because the Gridonomics™ value estimate 
does not take into account the effects of 
managing the data in the most effective 
manner, and applying and leveraging 
advanced analytics to the data.  That is, the 
$210 billion value does not fully account for 
the potential to extract greater network 
operational and business benefits by 
following the methods proposed.   

Figure 1. McKinsey Ease of Value Capture Heat Map

While the subject of data management and 
analytics has tended to be treated in the 

                                                            
1 Bob Metcalfe, GigaOM Interview, October 2, 2007 
2 Paul De Martini and Leonardo von Prellwitz, Cisco Systems, “Gridonomics”, September, 2011 
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industry in rather confusing and hyperbolic language, the approach described in this paper is intended to 
provide simplifying frameworks that build upon the existing end-to-end process orientation and data 
centric operations of utilities. As such, it is interesting to consider the heat map from McKinsey3 in Figure 
1 above illustrating industry segments’ orientation toward value realization from data.  McKinsey’s 
“relative ease” index rating suggests that utilities should be able to capture the value inherent in the data 
if the approach described in this paper is followed. 

Identifying and Classifying Data Characteristics 
The current “Big Data” discussion often does not differentiate between the several types of data found in 
utility operations or the temporal aspects related to the data types.  It is important to distinguish the 
different types of data, including, among others, energy characteristics, operational state for energy 
production/storage/use, economic utility values, building/plant, process/device performance 
characteristics, market participant/customer data, geospatial information, electric network contextual 
information, and temporal/service attributes.  To manage data effectively, it is essential to understand the 
differences related to each data class, their potential applications, and their respective latency 
considerations.  Framing the data characteristics correctly allows proper treatment and identification of 
effective management solutions.  Much of the industry discussion today on data management solutions 
seems to ignore this initial step in understanding the nature of the architectural and engineering problems 
to solve, causing potential challenges when integrating into the unified energy platform. Further, without 
a clear understanding of the potential analytics and business use from development of a data and analytic 
architecture at the outset, there is a risk of creating stranded costs from having to rework data stores and 
possibly buying the wrong data management solutions. 

Data Class 
Data arising from smart grid devices and systems may be grouped into five classes. Each has its own key 
characteristics and business value; an understanding of these classes is important in the development of 
networking solutions for electric utilities. Table 1 below describes these five key data classes. 

Table 2. Data Classes 

Data Class  Description  Key Characteristics 
Telemetry  Measurements made repetitively on power 

grid variables and equipment operating 
parameters; some of this data is used by 
SCADA systems 

Constant volume flow rates when the data 
collection technique is polling; standard SCADA 
polling cycles are about 4 seconds, but the trend 
is to go faster; telemetry can involve a very large 
number of sensing points. Telemetry data usually 
comes in small packets (perhaps 1500 bytes or 
so). 

Oscillography  Sample data from voltage and current 
waveforms 

Typically available in bursts or as files stored in 
the grid device, captured due to a triggering 
event; transferred on demand for use in various 
kinds of analyses. For some kinds of sensing 
systems, waveform data is acquired continuously 
and is consumed at or near the sensing point to 
generate characterization values that may be 
used locally or reported out (e.g., converting 

                                                            
3 McKinsey & Company, “Big data: The next frontier for innovation, competition, and productivity”, May 2011 
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waveform samples to RMS voltage or current 
values periodically); waveform sampling may be 
at very high rates from some devices such as 
power quality monitors. 

Usage Data  Typically meter data, although metering can 
occur in many forms beside residential usage 
meters; typically captured by time‐integrating 
demand measurements combined with voltage 
to calculate real power 

May be acquired on time periods ranging from 
seconds to 30 days or more; residential metering 
may store data taken as often as 15 minutes, to 
be reported out of the meter one to three times 
per day 

Asynchronous  
Event Messages 

May be generated by any grid device that has 
embedded processing capability; typically 
event messages generated in response to some 
physical event; this category also includes 
commands generated by grid control systems 
and communicated to grid devices; may also 
be a response to an asynchronous business 
process, e.g., a meter ping or meter voltage 
read 

For this class, burst behavior is a key factor; 
depending on the nature of the devices, the 
communication network may be required to 
handle peak bursts that are up to three orders of 
magnitude larger than base rates for the same 
devices; also, since many grid devices will 
typically react to the same physical event, 
bursting can easily become flooding as well. 

Meta‐data  Data that is necessary to interpret other grid 
data or to manage grid devices and systems or 
grid data 

Meta‐data includes power grid connectivity, 
network and device management data, point 
lists, sensor calibration data, and a rather wide 
variety of special information, including element 
names, which may have high multiplicity 

 
Note that the business value of each class is not necessarily equal to that of other classes. It is important 
that each utility understand this concept and define the business value of each data class, perhaps to the 
point of subdividing the classes as appropriate for the specific utility’s drivers and constraints, so that 
proper data management solutions may be derived that reflect the utility’s business requirements. Also, 
data often is used by multiple departments within a utility and may have quite different perspectives on 
the classifications above. It is critical that a holistic approach is utilized along with an effective 
governance process to reconcile and differences. The governance process used for enterprise business 
process management should be utilized as the potential prioritization and ownership issues with data are 
part of this domain. 
 
Latency 
Identifying the temporal aspects of the underlying 
business processes and control systems is a critical 
consideration to develop effective data management 
strategies and architectures. A lot of grid data has 
multiple uses; in fact, it’s an element of synergy that 
has significant impact on smart grid economics and 
system design (networking, data architecture, and 
analytics) to ensure that data is used to support as 
many outcomes as possible. Latency in this context 
can be defined as both the time interval between the 
time data is requested by the system and the time t
data is provided by a source and/or the time that 
elapses between an event and the response to it. T
is why it is important to understand how data is consumed in a variety of ways and places in a power grid 
and utility operations. While much industry focus has been directed at customer energy consumption data 

Source: J. Taft, Accenture

Figure 2. Grid Data Latency Hierarchy

he 
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generated from smart metering systems, it is also important to understand the implications of the grow
in grid sensor and control data streams. This is because much of this sensing and control data does not 
enter the data center and some does not even enter the control/operations center, as it must be cons
while streaming in grid devices and systems. Consequently it is important to classify data according t
latency requirements of the devices, systems, or applications that use it and define appropriate 
persistence, or actually, lack of such.  

th 

umed 
o the 

Figure 2 above  illustrates the issue of latency.  Latency hierarchy is a key concept in the design of both 
data management and analytics applications for physical networks with control systems or other real time 
applications.  

What the latency hierarchy chart does not 
illustrate is that a given data element may in 
fact have multiple latency requirements and 
uses, meaning that any particular datum may 
have multiple destinations. Figure 3 to the 
right illustrates how data from a smart meter 
system may be used to support multiple 
operational process and analysis. Each use has 
unique performance and latency requirements.  

This is why latency considerations must be 
included in the design of an energy platform. 
Otherwise, significant, and potentially fatal 
architectural issues will arise. These include; 
inability for applications or data stores to 
scale, inability to access data on a timely basis 
to meet business and operational needs, and/or 
creation of choke points on underlying telecommunications and computing infrastructure. Latency is 
probably the most overlooked and least understood aspect of utility data management today. 

The latency hierarchy issue is also directly connected to the issue of lifespan classes, meaning that 
depending on how the data is to be used, there are various classes of storage that may have to be applied. 
This typically results in hierarchical data storage architecture, with different types of storage being 
applied at different points in the grid corresponding to the data sources and sinks, coupled with latency 
requirements. Table 2 below lists some types of data lifespan classes that are relevant to smart grid 
devices and systems. 

Table 2. Data Lifespan Classes 

Data Lifespan Class  Characteristics 
Transit  Data exists for only the time necessary to travel from source to sink and be used; it persists only 

momentarily in the network and the data sink and is then discarded; examples are an event message 
used by protection relays, and sensor data used in closed loop controls; persistence time may be 
microseconds 

Burst/Flow  Data that is produced in bursts or is processed in bursts may exist temporarily in FIFO queues or 
circular buffers until it is consumed or overwritten; examples include telemetry data and 
asynchronous event messages (assuming they are not logged) – often the storage for these data are 
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incorporated directly into applications, e.g., CEP engine event buffers 
Operational   Data that may be used from moment to moment but is continually updated with refreshed values so 

that old values are overwritten since only present (fresh) values are needed; example: grid (power) 
state data such as SCADA data that may be updated every few seconds 

Transactional  Data that exists for an extended but not indefinite time; typically used in transaction processing and 
business intelligence applications; storage may be in databases incorporated into applications or in 
data warehouses, datamarts or business data repositories 

Archival   Data that must be saved for very long (even indefinite) time periods; includes meter usage data (e.g. 
seven years), PMU data at ISO/RTO’s (several years); log files. Note that some data may be retained in 
multiple copies; for example, ISO’s must retain PMU data in quadruplicate. 

 

Data Storage, Complex Processing, and Analytics   
To manage Big Data it is essential to apply technology solutions appropriate to the data class and 
intended business processes to achieve the expected results. New data sources and flattening of business 
processes across a utility have created confusion as to the right technical solutions. In many instances, it is 
not a question of one technical approach versus another but rather what is the best combination for the 
business need. The following discussion provides a foundation for consideration of the use of data stores, 
complex processing and analytics for the 21st Century unified energy platform. 

Data Stores 
The foregoing suggests that data storage is not a simple matter of a storage area network at the utility 
enterprise data center. Many types of storage and database technologies are useful in the smart utility 
context. However, Hadoop, Oracle, SAP and Teradata all impact when and how analysis takes place and 
how to link together so the entire value chain can be viewed. Table 3 below summarizes principal types. 
Some types are specialized for specific purposes; others like standard SQL databases are used for more 
general utility applications.  

Table 3. Data Store Types 

Store Type  Comments 
Operational Data Stores  Used to hold state data which is continually refreshed, such as power and device state 

data, real time grid topology. 
Time Series Stores  Used to hold telemetry that will be processed in various ways over various time scales, 

but specifically including very long times. 
FIFO Queues and Circular 
Buffers 

Very short term storage for data being consumed quickly by applications; often 
implemented in the application itself as memory resident small volume buffers 

Meter Usage Data 
Repositories 

Large scale repositories for meter data; these often hold the data of record for billing; 
generally associated with meter data management systems, although some 
independent MUDR’s have been implemented. 

Relational Databases  Widely used in a variety of operational and enterprise contexts; built using either 
standard relational database technologies or memory‐resident versions for faster 
response, especially in business intelligence and decision support applications. Utilities 
may have many such databases that have grown organically over many years of 
operation. 

Warehouses and Datamarts  Used for storage of very large data sets for business intelligence, data mining, and the 
like; generally relational, but newer approaches are emerging.  

True Distributed Databases  Databases in which various data elements exist in non‐duplicated form on various 
physical stores, non‐duplication being key to scalability; useful for operational data/grid 
state in distributed intelligence environments. 

Waveform Repositories  Used to hold waveform files (oscillography); the waveform files may be treated as 
BLOB’s; repositories can be special purpose or a general content management tool. 
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GIS as a Data Store  Geographic Information Systems are often the system of record for as‐built physical 
network topology (occasionally it may be the Outage Management System that 
performs this function for Distribution); some smart grid applications need access to the 
as‐built topology meta‐data, so it can be necessary to use the GIS as a database, 
although most are not built for real time or near real time query support. Consequently, 
as‐built topology may be staged to a datamart for near real time access, with periodic 
updates from the GIS to the datamart. 

Federated Databases  This is not a database type so much as a middleware for databases; federation can tie 
together heterogeneous databases so that querying systems do not need the details of 
the multiple underlying databases; this technology, along with CIM‐structured relational 
databases has been used to integrate multiple operational, transactional, and time‐
series databases in smart grid data management solutions 

No‐SQL/NoReL databases  Developing in response to “big data” requirements, these databases avoid the use of 
relational structure (hence the names “No‐SQL” and “NoRel”), these databases are 
intended to scale to petabytes and beyond. These are beginning to see some use for 
business intelligence applications but have not penetrated utilities much as yet. 

Content Manager Stores  Databases designed specifically for content management, so that files of various kinds 
can be stored, access‐controlled, version‐controlled, etc. Useful for BLOB‐like objects, 
hence the mention above for waveform repositories, but also useful for engineering 
drawings, video, manuals, and grid device settings/configurations 

 

As an example of why it is important to understand the relationships among the data classes, persistence 
models, and data store types, consider the present interest in the Hadoop “big data” storage model. 
Hadoop was originally designed by Google to analyze very large data volumes with a mix of complex and 
structured data that don’t fit nicely into relational data bases.  As such, the Hadoop model can be very 
good for enterprise-level business data repositories. However, for operational data it has several 
drawbacks4: 

 The centralized data store model cannot satisfy the needs of low latency multi-objective/multi-
controller (MO/MC) systems where analytics must often be consumed close to the point of data 
generation. 

 
 The Hadoop Distributed File System (HDFS) coherency model does not work for dynamic 

operational state information and bursty event message data flows that are huge components of 
the big data challenge of smart physical systems. “HDFS applications need a write-once-read-
many access model for files. A file once created, written, and closed need not be changed.” 

 
 The HDFS data access model is not suitable for highly interactive real-time system operations – 

“HDFS is designed more for batch processing rather than interactive use by users. The emphasis 
is on high throughput of data access rather than low latency of data access.” 

 
 The destination for much of the data in a smart grid/smart physical system environment is NOT 

an enterprise data center. 
 

                                                            
4 The discussion and quotations regarding the use of Hadoop is based on material from the Hadoop website: 
(http://hadoop.apache.org/) 
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As another example of how data characteristics influence data and analytics architecture, consider the 
processing of data that is logically treated as a batch (such as meter usage data) as compared to data that is 
available as a stream, such as Phasor Measurement Unit (PMU) data. In the batch case, there is a data 
collection process that aggregates and accumulates data into a large store and then various data processing 
steps are applied to the entire set of data. In the meter case, this includes VEE and the processing of 
billing determinants into actual billing statements. For PMU data on the other hand, the situation more 
nearly resembles live streaming video. In this case, it is grid power state measurement data that is 
streaming, but the real-time use of such data eliminates the possibility of accumulating it into a large store 
to be processed offline, when the goal is to provide on-going operator decision support for grid 
operations, for example. In such case, the data is processed live, so that real-time data stores such as First 
In First Out (FIFO) queues are the first destination of the data, which is then piped into streaming 
analytics. As a secondary issue, the data may then be sent to a time series repository, so that offline 
analyses can in fact also be performed later. Thus a two-stage data management and analytics architecture 
is needed. Streaming data is increasingly common in smart grid implementations, as is bursty 
asynchronous event message data, leading to the need for a newer model for processing such data types, 
namely Complex Event Processing, which has lately also become known by the name “streaming 
database.” 

Complex Event Processing and Streaming Databases 
Considering data class characteristics, latency hierarchy, and storage classes, we begin to see that the 
architecture of the modern utility data management system is increasingly distributed in nature and 
complex in form. Complex Event Processing (CEP) is a technology that has found wide use in industries 
as varied as financial systems, homeland security, and sensor data processing. In each of these cases, the 
common element is that data from edge devices must be processed “on the fly”, whether it comes in 
streams or asynchronous bursts. The CEP technology is capable of applying complex queries to multiple 
data streams simultaneously to detect specified conditions (“events”), thus triggering appropriate actions 
in real time.  

This distributed evolution poses new system integration issues as well as data management issues; even 
though it may be necessary to persist data in a distributed manner, the utility will certainly want to 
manage and potentially govern it from a central location. In addition, the need to combine various data 
storage types into a hierarchical multi-store scheme suggests the need for the use of data federation 
techniques in order to integrate the various stores into a unified data management solution. Finally, there 
is a need to integrate data quality management at the various levels of this data management hierarchy. 
While the tools for doing this at the enterprise level are well established, the same is not true for the lower 
latency aspects of grid data management. For example, several utilities have found that some level of 
filtering was also required for certain sources to ensure data quality correlation used to eliminate potential 
false positives. Utilities may wish to look at complex event processing (which has many other uses in an 
advanced grid environment) as also being useful for monitoring data quality in a streaming fashion. 

The data quality issue bears further consideration. Tools and techniques for data quality monitoring and 
assurance at the enterprise data center level are fairly well established. However, these tools and methods 
presume that data will be resident for a period of time and that as behavior patterns gradually emerge, it 
will be possible to specify a set of rules that can then be applied against the data base going forward to 
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detect data quality issues. Clearly this model is not applicable to real time data flows and streams in a 
distributed smart grid environment.  

CEP technology is well established and can be implemented in centralized or distributed form. For the 
centralized form, the implementation resides in a data center and can be scaled to handle millions of 
events per second.  For the distributed form, small footprint, embeddable versions of the CEP engine and 
rule base exist and can be implemented in distributed, cooperative fashion at the control center, at primary 
substations, and in distribution feeder devices. In addition to monitoring data flows for data quality issues, 
CEP can also perform the functions of message burst/flood management and filtering, and can be used to 
process sensor data to extract core information to be acted upon locally or to be forwarded to higher levels 
of the utility decision control hierarchy. Distributed CEP can be implemented such that individual CEP 
elements cooperate to generate complete event processing results. 

CEP can support a range of relevant utility business functions. These include meter data management, 
fault detection, outage management, SCADA support, and remote device/system monitoring. In line with 
the previous discussion about the value of various grid data classes, CEP is a flexible tool that when 
included in an overall data management strategy and architecture, can significantly augment the flexibility 
needed to implement modern utility grid data management solutions. 

Analytics  
Utility operational decision making is evolving to address growth in intermittent resources and responsive 
load as well as technology advances to address grid reliability objectives. The time periods for making 
grid operational decisions are declining and the situational analysis is increasingly becoming automated 
as opposed to human centric.  These changes are being facilitated by an increase in grid sensors providing 
greater fidelity of operational data and operational systems migrating from deterministic approaches to 
more stochastic methods.  

Depending on the regulatory construct, reductions in operating expense may create headroom within an 
existing utility’s “flat-lined” revenue requirements for additional capital spend and associated earnings 
growth.  The opportunities are significant. As such, operational excellence programs have become a 
business imperative for utilities worldwide.  For this reason, business processes across a unified electric 
platform will be an increasingly important area of industry differentiation in terms of both financial 
performance as well as customer experience.  Also, customer service expectations are following the 
broader consumer technology evolution – substantially changing every 18-24 months. This is why the 
leading utilities are following many examples of successful Fortune 500 firms over the past decade by 
embracing and competing on analytics. 

The objective for analytics is to automate high-volume decisions on a unified energy platform across a 
utility with precision in a consistent, scalable, fast and economical manner that allows a high degree of 
adaptability.  The current range of commercial data management solutions is rather broad, including many 
enterprise data analytic tools and specialized energy and water analytics.  Applying the right solution to a 
particular business process can be challenging given the variety of data characteristics and related 
business process within and across four primary operating units; transmission and distribution (T&D), 
customer service (Cust Svc), energy procurement (Energy Trading) and information technology (IT). In 
simple terms, these processes involve asset management, operations, customer engagement, and trading 
and risk management. 
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Figure 4 below illustrates a data management solution-business process matrix that may be developed to 
identify and clarify the various commercial solutions available to support several utility business unit 
processes.  

Figure 4. Data Management-Business Process Matrix 

 

Opers Asset Mktg Opers TRM Opers Opers Asset
Data Stores
Complex Event Processing
Analytics
Tools
Data Integration (inc ESB)
Algorithms
Presentment

T&D Cust Svc Energy Trading IT

The current analytic solutions market is comprised of commercial products in four general segments: 
tools, data integration, algorithms and presentment.   

 “Tools” are products that provide a set of analytical tools that are configurable to create 
algorithms and decision models specific to a customers’ need.  These tools require professional 
services and customer domain expertise to implement and maintain them successfully.   
 

 “Data Integration” solutions combine utility proprietary data with commercially available data 
sources and with pre-designed and/or configurable algorithms to yield unique information. Data 
integration, for example, can enable utilities to develop their own primary research data on 
customer behavior eliminating the dependence on costly and less effective secondary research. 
 

 “Algorithms” are products that have been developed to address specific business areas to at least 
80% of the functional requirement. While these solutions require external professional services 
and domain expertise for the remaining configuration, it is much less than that required for tool-
based applications.  
 

 “Presentment” solutions usually provide geospatial context, in addition to sophisticated graphical 
human interface.  These applications can leverage proprietary asset locational information and 
real-time operational data in addition to mash-ups of commercially available geospatial 
information. Like tools, presentment products require system integration services and domain 
expertise to yield the best results.  

 
Many commercial products combine functionality from two or more segments and can be leveraged 
across several business processes.  As described in this paper, it is important to map business needs with 
the core capabilities of analytics solutions when assessing applicability as part of a data management 
strategy.  This will allow better identification of value creation synergies and avoid overlapping 
functionality that can result in complicated system integration, higher costs and over paying.  
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Data Management Strategy  
Effective use and management of data requires a holistic technology management framework to align
business needs with technology decision 

 
processes to achieve the desired results.   The figure below 

illustrates such a multi-step fram

Figure 5. Data Management Framework 
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ework. 

 

This framework incorporates both existing and future business needs (e.g., use cases, processes, values, 
priorities) to set a foundation for assessing appropriate architectures and data management solutions a
initial step. This is followed by development of a decision map of internal and external clients with 
respective information services and decision analytics. This mapping includes identification of the 
requirements for each identified decision process.  Data characterization, as described earlier, i
required to align the decision processes identified in step two with subsequent architectural and 
technology decisio

Decision Map

Clients
Info Services
Decision Analytics
Temporal Aspects

Data Characterization

Data Sources
Data Class
Latency
Hierarchy

Solution Matrix

Info Services &
Decision Analytics
Mapped to Vendor 
Solutions

Technology 
Evaluation

Measurement
Strategy

Analytics 
Architecture

Data Mgmt
Strategy & 
Roadmap

Oper Excellence

BPR
Use Cases
Value Identification
Prioritization

1 2 3 6 7

4 5 8

solution matrix. 

The measurement strategy includes the development of an observability strategy and sensor/measure
system architecture. These are both driven by requirements derived from the protection and control 
system architecture, and the applications architecture. The measurement strategy takes into account the 
real time data needs, as well as constraints on cost of implementation, and therefore takes into account the 
structure of the grid in question. By applying the control theory concept of observability5, it is possible to
minimize the cost of the measurement subsystem while achieving the necessary observability of the grid 
for support of the protection/control system and other application
asset utilization optimization, and asset lifecycle management.   

The decision map and measurement strategy enable development of an analytics architecture. The 
analytics architecture derives from the set of business process requirements for the advanced grid, a
takes into account measurement strategy, grid and communication network structure. In the Cisco 
GridBlocksTM Reference Architecture, the communications network is also a platform for distributed 
intelligence, a prime element of which is distributed analytics. The reason for this is that in a distributed 

 
5  Observability is a measure for the effectiveness of a system's sensor data to determine the behavior of the entire system.  
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latency that precludes central processing at a control or data center. To facilitate the development of the 
analytics architecture, it is helpful to develop a taxonomy of analytics classes such as Figure 6 below6.  

Figure 6. Analytics Taxonomy 

 

By combining this taxonomy with the measurement strategy and requirements for protection and control 
and other applications, the utility can develop a full analytics architecture that indicates not only what 
types of analytics are needed, but also where in the grid and in the network these analytics should reside.  
The resulting architecture supports development of the solution matrix, technology evaluation, and 
selection of the final data management strategy and roadmap. Some of the key implications for data 
architecture include the need to provide multi-level persistence modes, coupled with analytics matched to 
latency requirements, and the need to transition from fully centralized, batch-oriented processing to 
distributed, event drive processing with centralized management. 

Conclusion 
In response to the adoption of intermittent renewable resources, distributed energy resources, and the 
enabling of millions of customers to participate in electricity markets, 21st Century electric networks are 
evolving on multiple dimensions including the development of unified energy platforms. Concurrently, 
operational excellence programs have become a business imperative for utilities worldwide striving to 
meet earnings objectives.  Management of data and use of business analytics offer the potential to address 
several critical needs that arise from these two trends. It is essential to consider the inter-relationships 
between business processes, business applications, data management and telecom and computing 
infrastructure.   

Specifically, the utility information universe is changing from mostly relatively high-latency, batch-
oriented processing to low-latency, streaming and asynchronous event message-driven real-time 
operations, not only on the grid operations front, but also on the customer experience and energy 
markets/transactive load fronts. With multiple classes of data, and the recognition that the data classes or 
                                                            
6 Note: “Network Analytics” in Figure 6 refers to telecommunication networks and “Technical Analytics” refers to electric 
operational analytics. 
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even specific subsets of the data classes have differing economic values, the problem of managing utility 
data, processing the data and consuming it have become both larger, more complex, and far more crucial 
to the utility that in the past. Utilities are making the transition from being in the energy delivery business 
to being in the energy delivery and energy information management business. Data volumes are rapidly 
increasing and new uses for grid-derived data are being developed as new market models for energy 
delivery evolve. 

This places a new emphasis on the need for updated data management architectures that move from batch 
to event-driven real time operation, that accommodate multiple uses for the same data at differing 
latencies, and that recognize that the value of data is in part based on the various ways it can be used. 
These ways often depend on the application of multiple analytics to the same data sets to extract differing 
information or differing views of the information inherent in the data. Ultimately, utilities must view their 
grid data as significant assets which need new data management strategies, roadmaps and architectures to 
preserve, extract, and realize the full value of grid modernization. The asset value holds whether a small 
or large utility, but the level of complexity increases significantly with the scale and scope of a utility’s 
operations and supporting systems. 

Value realization requires thoughtful planning, design, technology selection and implementation of data 
management strategies. Failure to comprehensively address these considerations in a worst case scenario, 
may lead to potentially tens of millions of dollars in stranded IT assets.  It is clear that a structured 
approach can successfully harness these technologies to realize the opportunities. The data classification 
and management framework, data-related technology management, and data taxonomy process proposed 
in this paper will ensure that electric utility and industry stakeholders are well informed of the data-related 
needs, value proposition, architectural considerations, and commercial options that are properly aligned 
for success. In many cases utilities have already started on a path to manage data from their new systems, 
like smart metering, and create operational information. However, the recommendation is to apply these 
methods as part of the next architecture review or data management/analytics project pre-engineering 
effort to ensure future success. A utility’s success in the 21st Century depends on the development and 
execution of a successful data management and intelligence strategy that effectively converges 
operational processes and the technology stack from application through telecommunications 
infrastructure. 
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